IMMUNOCHEMICAL AND MASS-SPECTROMETRY-BASED SERUM HEPcidin assays for iron metabolism disorders

Mgr. Dušan Holub
Journal club presentations
15. February 2012

Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and Faculty Hospital in Olomouc, Puskinova 6, 775 20 Olomouc, Czech Republic
Background

Hepcidin:

- is iron-regulatory peptide hormone
- consists of 3 isoforms:
 - bioactive hepcidin-25
 - inactive hepcidin-22
 - inactive hepcidin-20

- Instrumental in the diagnosis
- Monitoring of iron metabolism disorders

- Reliable methods for its quantification in serum are sparse
- isn’t knowledge of their relative analytical strengths and clinical utility
Main objective of this study

• Determined:
 • the differences in absolute concentrations
 • The degree to which the presence of hepcidin isoforms influenced the concentrations

• Ability to differentiate between samples from patients with IDA and those with IDA and anemia of chronic disease (ACD)
Methods

Developed methods:

• A competitive (c) – ELISA

• An immunocapture TOF mass-spectrometry (IC-TOF-MS) assay

• Weak cation exchange (WCX)-TOF-MS

Measured serum hepcidin concentrations in 186 patients and 23 healthy controls
Competitive ELISA

- 96-Well plates were coated overnight with goat-antirabbit IgG (Fc) Ab
- Blocked with BSA 2h
- Incubated with rabbit-antihuman hepcidin antibody for 2h
- Study samples and biotinylated hepcidin-25 calibrator were added to the wells and incubated overnight at 4°C
- Plates were incubated for 1h with conjugate a substrate was added for 15 min

The color reaction was stopped and absorbance measured at 492 nm.
Immunocapture TOF-MS

- Rabbit-antihuman hepcidin antibody was coupled to protein A sepharose beads
- Serum and the internal standard (hepcidin-24) were incubated for 1h with the beads-antibody complex
- Hepcidin was eluted from the beads (50% ACN and 0.5% TFA)
- 1 ul was applied to a MicroScout Plate 96 polished steel plate and m/z spectra were generated by using TOF-MS
WCX-TOF-MS

- This method is a combination of WCX bead-based hepcidin enrichment followed by TOF-MS
- As internal standard (hepcidin-24) was used for quantification
- m/z spectra were generated by using MALDI-TOF-MS

Total hepcidin concentration was defined as the sum of hepcidin-25, -22 and -20 concentration
Sample selection for the overall comparison of the 3 hepcidin assays

<table>
<thead>
<tr>
<th>Samples selection</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy controls</td>
<td>23</td>
</tr>
<tr>
<td>IDA patients</td>
<td>10</td>
</tr>
<tr>
<td>ACD patients</td>
<td>10</td>
</tr>
<tr>
<td>multiple myeloma patients</td>
<td>6</td>
</tr>
<tr>
<td>HFE-hemochromatosis (HH) patients at presentation</td>
<td>9</td>
</tr>
<tr>
<td>iron-depleted HFE-HH patients</td>
<td>8</td>
</tr>
<tr>
<td>C282Y/H63D HFE compound-heterozygous HH patients at presentation</td>
<td>5</td>
</tr>
<tr>
<td>Iron-depleted hemojuvelin-mutated HH patients</td>
<td>3</td>
</tr>
<tr>
<td>chronic kidney disease (CKD) patients</td>
<td>84</td>
</tr>
<tr>
<td>coronary artery bypass graft surgery patients</td>
<td>22</td>
</tr>
<tr>
<td>septic shock (sepsis) patients</td>
<td>19</td>
</tr>
<tr>
<td>healthy volunteers who were injected with lipopolysaccharide</td>
<td>5</td>
</tr>
<tr>
<td>metabolic syndrome patients</td>
<td>5</td>
</tr>
<tr>
<td>Total of samples</td>
<td>209</td>
</tr>
</tbody>
</table>
Analytical characteristics of hepcidin assays

<table>
<thead>
<tr>
<th></th>
<th>WCX-TOF-MS</th>
<th>c-ELISA</th>
<th>IC-TOF-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical LLOD, pmol/L</td>
<td>NA<sup>a</sup></td>
<td>20.8</td>
<td>NA</td>
</tr>
<tr>
<td>Functional LLOD, pmol/L</td>
<td>500</td>
<td>26.5</td>
<td>100</td>
</tr>
<tr>
<td>Intraassay CV, range, %</td>
<td>2.2–3.7</td>
<td>4.8</td>
<td>3.9–13.1</td>
</tr>
<tr>
<td>Interassay CV, range, %</td>
<td>3.9–9.1</td>
<td>11.2</td>
<td>—</td>
</tr>
<tr>
<td>Recovery, range; mean, %</td>
<td>96–102; 99</td>
<td>86–114; 98</td>
<td>95–105; 100</td>
</tr>
<tr>
<td>Linearity</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Parallelism</td>
<td>—</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Cross-reactivity hepcidin-20, %</td>
<td>0</td>
<td>68</td>
<td>0<sup>b</sup></td>
</tr>
<tr>
<td>Cross-reactivity hepcidin-22, %</td>
<td>0</td>
<td>47</td>
<td>0<sup>b</sup></td>
</tr>
</tbody>
</table>

^a NA, not applicable; —, not determined; analytical LLOD, lowest level that can be detected based on a protein standard; functional LLOD, lowest level that can be detected based on human serum samples.

^b No cross-reactivity was indicated because MS results are specific for hepcidin-25.
Relation between the serum hepcidin methods

A

\[y = 0.79x - 0.81 \]

\[R = 0.912^* \]

B

\[y = 0.85x - 0.58 \]

\[R = 0.920^* \]

C

\[y = 0.26x + 0.05 \]

\[R = 0.743^* \]

D

E

F

% Difference ELISA and WCX-TOF-MS

Mean ELISA and WCX-TOF-MS (hepcidin-25) (nmol/L)

Mean ELISA and WCX-TOF-MS (total hepcidin) (nmol/L)

Mean ELISA and IC-TOF-MS (hepcidin-25) (nmol/L)
Fig. 2. Bland–Altman plots for the comparison between c-ELISA and WCX-TOF-MS hepcidin-25 and total hepcidin concentrations for (A,B) 84 CKD patients with (n = 67) and without (n = 17) hepcidin isoforms (bias = 32.6%, SD = 40.5%; bias = 8.1%, SD = 32.8%, respectively) and (C,D) in all patients without isoforms, CKD patients excluded (n = 104 of 209) (bias = 33.7%, SD = 60.3%, for both).
Hepcidin concentrations in the various iron disorders as measured by the WCX-TOF-MS (hepcidin-25, closed bars, total hepcidin, striped bars) and c-ELISA (total hepcidin, open bars) hepcidin assays.
Clinical utility of low hepcidin concentrations as assessed by the different assays
Results

• They found:
 • The relative differences in median hepcidin concentrations in various diseases to be similar
 • The absolute concentrations measured with c-ELISA and WCX-TOF-MS differed
 • Hepcidin isoforms contributed to differences in hepcidin concentrations between methods
 Chronic kidney disease
 • Hepcidin concentrations measured by c-ELISA and IC-TOF-MS correlated with ferritin concentrations <60 μg/L and were suitable for distinguishing between iron deficiency anemia (IDA) and the combination of IDA and anemia of chronic disease.
Conclusions

• **c-ELISA**
 + Method of choice for the large-scale quantification of serum hepcidin concentrations
 + Low limit of detection
 + Low cost
 + High-throughput
 - Not specificity for bioactive hepcidin-25

• **WCX-TOF-MS**
 + this method can be used to distinguish variable concentrations of hepcidin isoforms – chronic kidney disease
 - Relatively expensive equipment
All data, tables and graphs were used from this article:

Immunochemical and Mass-Spectrometry–Based Serum Hepcidin Assays for Iron Metabolism Disorders

Thank you for attention.
This use for **Acknowledgement:**

Investment in education development in molecular oncology
reg.n.:CZ.1.07/2.3.00/09.0089

This project is co-financed by European social fund in the Czech republic.